Approximation Algorithms Based on the Primal-Dual Method
ثبت نشده
چکیده
The primal-dual method (or primal-dual schema) is another means of solving linear programs. The basic idea of this method is to start from a feasible solution y to the dual program, then attempt to find a feasible solution x to the primal program that satisfies the complementary slackness conditions. If such an x cannot be found, it turns out that we can find a better y in terms of its objective value. Then, another iteration is started. The above idea can also be modified to design approximation algorithms. An approximate solution to the primal IP and a feasible solution to the dual LP can be constructed simultaneously and improved step by step. In the end, the approximate solution can be compared with the dual feasible solution to estimate the approximation ratio. One of the key strengths of this method is that it often allows for a combinatorial algorithm (based on the primal/dual view) which is very efficient.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملApproximation Algorithms Based on the Primal-Dual Method
The primal-dual method (or primal-dual schema) is another means of solving linear programs. The basic idea of this method is to start from a feasible solution y to the dual program, then attempt to find a feasible solution x to the primal program that satisfies the complementary slackness conditions. If such an x cannot be found, it turns out that we can find a better y in terms of its objectiv...
متن کاملPrimal-Dual Schema for Capacitated Covering Problems
Primal-dual algorithms have played an integral role in recent developments in approximation algorithms, and yet there has been little work on these algorithms in the context of LP relaxations that have been strengthened by the addition of more sophisticated valid inequalities. We introduce primal-dual schema based on the LP relaxations devised by Carr, Fleischer, Leung & Phillips for the minimu...
متن کاملUsing Combinatorial and LP-based Methods to Design Approximation Algorithms
Our goal in this proposal is to explore the connection between the local ratio technique and linear programming. We believe that a better understanding of this connection will strengthen and extend the local ratio technique and will enable us to apply the technique to a wide variety of problems. Specifically, we intend to improve the best performance guarantee and/or running time of approximati...
متن کاملNew primal-dual algorithms for Steiner tree problems
We present new primal-dual algorithms for several network design problems. The problems considered are the generalized Steiner tree problem (GST), the directed Steiner tree problem (DST), and the set cover problem (SC) which is a subcase of DST. All our problems are NP-hard; so we are interested in approximation algorithms for them. First we give an algorithm for DST which is based on the tradi...
متن کامل